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Abstract
We treat the two-particle Green function in the Hubbard model using the
recently developed τ -CPA, a hybrid treatment that applies the coherent potential
approximation (CPA) up to a time τ related to the inverse of the bandwidth,
after which the system is averaged using the virtual crystal approximation. This
model, with suitable approximations, does predict magnetism for a modified
Stoner criterion. The evaluation of the two-particle propagator in the τ -CPA
requires the solution of the pure CPA, within whose formalism the vertex
correction and the weighted Green functions are obtained. The dynamical
susceptibility, including the vertex correction and the weighted scattering by
the residual interaction, is calculated and shows a spin wave spectrum in the
ferromagnetic regime.

1. Introduction

In the previous paper [1], to be referred to as I, we developed an improved treatment of
the magnetic state of the simple Hubbard model, called the τ -CPA. This was constructed as
intermediate between the mean field Stoner model,equivalent to a virtual crystal approximation
(VCA) treatment of the energy bands, and the Hubbard’s alloy analogy method, which is
equivalent to the CPA (literature on the original and subsequent developments of the CPA is to
be found in [2–5]). The single-particle Green functions, and the properties such as the density
of states and magnetization which can be developed from them, are given in I and will be used
here without further derivations.

Several important magnetic properties in metallic systems, such as the susceptibility,
depend on two-particle propagators. The treatment of these is straightforward in VCA-type
theories but within the CPA method a number of complications arise. In particular, because
of the correlated scattering of the two particles from a single site, a vertex correction has to be
included. The theory of such systems in the alloy situation was developed by Velický [6] in
the 1960s and applied to the calculation of the electrical conduction. More recently, Schwabe
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and Elliott [7, 8] have shown how to derive weighted averages of such propagators which they
applied to the theory of electron–hole pairs combined to form excitons.

In the present problem the susceptibility is related to the propagation of a pair of electrons
of opposite spin, but because electrons of different types see different scattering centres these
theories have to be generalized to the case of a four-component alloy. In addition, the residual
interaction between electrons of opposite spin on the same site has to be included separately
and is the dominant cause of the appearance of spin waves within the model.

These properties are examined in the pure Hubbard CPA case which, as has been pointed
out [9, 10], has only a paramagnetic phase except in special circumstances. The treatment
can be carried over into the τ -CPA, again requiring a matching of the propagators, for t < τ

treated in the CPA with their vertex corrections, to the VCA solutions appropriate to longer
times. A full treatment of this situation with further approximations to improve the tractability
does indeed predict the existence of a broadened spin wave branch in the magnetic response
functions.

The equation of motion for the two-particle propagator needed for the susceptibility is
developed in section 2. Section 3 treats the two-particle Green function in the pure CPA.
In section 4 the results are combined in order to construct the solution in the τ -CPA. The
dynamical susceptibility is then calculated in section 5.

2. Two-particle Green functions in the Hubbard model

As was done in I we consider the Hubbard model

H = H0 + U
∑

i

c†
i↑ci↑c†

i↓ci↓ with H0 =
∑

i, j,σ

ti j c
+
iσ c jσ (1)

for N spins at temperature T = 0. The free part of the Hamiltonian H0 is evaluated in the
Bloch states H0 = ∑

k εkc+
kσ ckσ using a tight-binding approximation for the band structure

εk . In the linear response theory the induced moment is given in term of the susceptibility
tensor χµν(x − x′, t − t ′), µ, ν ∈ {x, y, z}. It is completely determined by the longitudinal
susceptibility χ zz and the transverse susceptibilities χ−+ and χ+−. We will concentrate in this
paper on the transverse susceptibilities, which are given as

χ−αα(x − x′, t − t ′) = i2πθ(t − t ′)〈[σ−α(x, t), σ α(x′, t ′)]〉 (2)

where α ∈ {+,−} and σ +(x) = c†
x↑cx↓, σ−(x) = c†

x↓cx↑. The general Green functions we
want to evaluate are therefore of the type

Ki jkl(t) = 〈〈c†
i↓(t)c j↑(t); c†

k↑cl↓〉〉 (3)

with χ−+(x, t) = −Kxx00(t). The equation of motion for Ki jkl in the Hubbard Hamiltonian
reads

E Ki jkl = T0[K ] + U
〈〈(

c†
i↓c j↑n̂ j↓ − n̂i↑c†

i↓c j↑
); c†

k↑cl↓
〉〉

E
(4)

T0[K ] := δ jk〈c†
i↓cl↓〉 − δil〈c†

k↑c j↑〉 +
∑

n

t jn Kinkl −
∑

n

tni Knjkl (5)

where T0[K ] is the free part of the equation of motion and n̂iσ the particle number operator
c†

iσ ciσ . A usual procedure for closing the equation of motion is to do a substitution n̂iσ → niσ ,
where niσ is a scalar. In the simplest approximation n̂iσ is replaced by the average number
of spins Nσ . This leads to the VCA treatment (or the Stoner model). A more sophisticated
approach consists in using the analogy between the Hubbard model and the binary alloy [11]
and replacing n̂iσ by 0 or 1. This leads to the CPA treatment developed in the next section.
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However, replacing the operators by numbers must be done carefully, as for i = j the two
interaction terms in (4) are both zero. In order to conserve this feature we write (4) as

E Ki jkl = T0[K ] + U〈〈(n j↓ − ni↑)c†
i↓c j↑; c†

k↑cl↓〉〉E − Uδi j〈〈(n j↓ − ni↑)c†
i↓c j↑; c†

k↑cl↓〉〉E .

(6)

The evaluation of the two-particle propagator in the Hubbard model using the τ -CPA methods
requires the solution of (6) in the pure CPA and in the pure VCA case. The latter case is
straightforward; the former is the subject of the next section.

3. Two-particle Green function in the pure CPA

In this section niσ in (6) takes the value 1 or 0, depending on whether there is a spin σ at i or not.
We first solve the equation of motion ignoring the last term in (6), and obtain an expression
for the weighted Green functions. The residual interaction is then included by means of a
weighted expansion.

3.1. The four-component alloy

If we leave aside the last term of (6), the model (1) can be reduced to

Hred =
∑

i, j,σ

ti j c
†
iσ c jσ +

∑

l,σ

ζlσ c†
lσ clσ with ζ j↑ = n j↓U and ζi↓ = ni↑U. (7)

The rest of this subsection is dedicated to finding an approximation for K 0
i jkl , where K 0

i jkl is a
solution of the reduced equation of motion

E K 0
i jkl = T0[K 0] + U(n j↓ − ni↑)〈〈c†

i↓c j↑; c†
k↑cl↓〉〉E . (8)

The quadratic Hamiltonian (7) allows us to decompose the two-particle Green function into
pairs of one-particle Green functions G(z). Moreover, it is now possible to apply the CPA
formalism directly [2]. The kinds of random energies defined in (7) suggest the following
extension of the binary alloy analogy to the two-particle case. As seen from (7), an up spin
travelling on the lattice is interacting only on the sites where there is a down spin. This can be
interpreted in the CPA as a particle, for example a spin up, moving in the lattice and meeting
either a ‘host’ (site with no spin down) or an ‘impurity’ (site with a spin down). Since a
travelling spin up does not see the same ‘hosts’ and ‘impurities’ as a spin down, we need to
define the lattice as being made of four kinds of sites rather than just two. Let n+, n−, n± and
n∅ be respectively, for each site, the probability of finding a single electron of spin up, a single
electron of spin down, both one spin up and one spin down, and no electron at all. The set
{n+, n−, n±, n∅} defines the four-component alloy for the system. Thus N↑ = n+ + n± is the
concentration of ‘impurities’ seen by a down spin and N↓ = n− + n± the one seen by an up
spin. The CPA equation can be written in the form [2]

N−σ (U − �σ )

1 − (U − �σ )Fσ
− (1 − N−σ )�σ

1 + �σ Fσ
= 0 (9)

where Fσ represents the trace of Ḡσ , the CPA approximation for the one-particle propagator.
Fσ and the self-energy �σ must be solved self-consistently for both ↑ and ↓, along with the
equilibrium condition on N↑ and N↓.

Within (7) the two-particle Green function decouples as products of a correlation functions
and Green functions. K 0

i jkl can therefore be written in terms of the one-particle retarded



2906 A Uldry and R J Elliott

propagator G(z) at temperature T = 0 in the following manner:

K 0
i jkl(E) = i

2π

∫ µ

−∞
dω [G↑( j, k; ω + E) G↓(l, i ; ω) − G↑( j, k; ω + E) G∗↓(l, i ; ω)

+ G↑( j, k; ω) G∗↓(l, i ; ω − E) − G∗↑( j, k; ω) G∗↓(l, i ; ω − E)]. (10)

This expression must now be averaged over all possible configurations of spins. This involves
the evaluation of quantities such as 〈G↑(z1)G↓(z2)〉. The up spins do not see the same
impurities as the down spins but are nevertheless subject to statistical correlations due mainly to
the doubly occupied sites and 〈G↑(z1)G↓(z2)〉 �= 〈G↑(z1)〉〈G↓(z2)〉. The vertex corrections
arising from statistical correlations are calculated below.

3.2. Vertex corrections for the four-component alloy

In this part the vertex correction is developed for a four-component alloy that is consistent
with the CPA. This is a straightforward generalization of the binary alloy case obtained
by Velický [6]. We adopt Velický’s procedure and look into evaluating G(2)(z1, z2) :=
〈G↑(z1)CG↓(z2)〉, where C in our case is a diagonal operator, since for the magnetic
susceptibility only quantities of the type 〈G↑

l,m (z1)G↓
m,l(z2)〉 are needed. The result, after

directly following Velický’s algebra, can be summarized as follows:

G(2)
k (z1, z2) = ak(z1, z2)

1 − (z1, z2)ak(z1, z2)
with ak(z1, z2) = 1

N

∑

q

Ḡ↑
q+k(z1)Ḡ↓

q (z2). (11)

The vertex correction, as a function of the scattering matrix elements Sσ
n ,

(z1, z2) = 〈S↑
n (z1)S↓

n (z2)〉
1 + F↑(z1)〈S↑

n (z1)S↓
n (z2)〉F↓(z2)

, (12)

gives the correlated scattering of the two particles for the same sites. We recall that the CPA
result for the Sns is Sn(z) = (ζn − �(z))[1 − [ζn − �(z)]F(z)]−1, where ζn is the random
potential felt at site n by the travelling particle. The evaluation of  for the four-component
alloy follows again on the same lines as for the binary alloy in the single-site representation.
The average 〈S↑

n (z1)S↓
n (z2)〉 is obtained by summing the contributions from the four species

on the lattice. Using the CPA result Fσ = (�σ − N−σ U)[�σ (U − �σ )]−1, we obtain the
following vertex correction:

−1 = 1

n± − N+ N−

(
N+ N−n0

�↑�↓ +
n+ N−(1 − N+)

�↑(U − �↓)

+
n− N+(1 − N−)

�↓(U − �↑)
+

n±(1 − N+)(1 − N−)

(U − �↓)(U − �↑)

)
. (13)

In the limit U → 0, 〈S↑
n S↓

n 〉 = 〈S↑
n 〉〈S↓

n 〉 = 0, so that  tends to zero. n± takes the same
value as in the purely random case where the two particles up and down are not interacting
with anything, that is n± → N+ N−. In this respect we note that the vertex correction, with
its factor (n± − N+ N−) in the numerator, gives a measure of the deviation from the random
value.

In the limit U → ∞, �σ → (−N−σ )[Fσ ]−1, so that  → (
n± − N+ N−)

[n0 F↑ F↓]−1.
In this limit the interaction should prevent any double occupation of the same site, so that we
expect n± → 0. The resulting  is proportional to both the concentration of species ↑ and ↓,
and inversely proportional to the proportion of vacant sites. The large U limit is conveniently
obtained in conjunction with the limit w → 0, where w is half the bandwidth. This limit is to
be treated with caution when dealing with the susceptibility, since no transitions are possible if
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the bands have no width. It is nonetheless possible to get an idea of what will be the respective
weights associated with the bands in the split-band limit. In this limit, the behaviour of the
Green function in the CPA is given by [7] Ḡσ (E) = (1 − N−σ )/E + N−σ /(E − U), so that
the two-particle Green function G(2)

0 (E1, E2) = G↑(E1)G↓(E2) becomes

G(2)

0 (E1, E2) = N↑ N↓

(E1 − U)(E2 − U)
+

N↑(1 − N↓)

E1(E2 − U)
+

(1 − N↑)N↓

E2(E1 − U)
+

(1 − N↑)(1 − N↓)

E1 E2
.

(14)

The transverse susceptibility χ−+ consists of transitions from the down spin states to the up
spin states. Though (14) suggests that four peaks will appear, the features of χ−+ strongly
depend on the filling of the bands. In a less than half-filled band, the chemical potential will
typically fall within the main sub-band. After the energy convolution on (14), only the last
two terms in (14) will remain. The inclusion of the vertex correction (13) has the effect of
modifying the weights in the following manner:

G(2)(E1, E2) = n±

(E1 − U)(E2 − U)
+

(N↑ − n±)

E1(E2 − U)
+

(N↓ − n±)

E2(E1 − U)
+

1 − N↑ − N↓ + n±

E1 E2
.

(15)

Since n± is always smaller than or equal to N↑ N↓, the first and last terms of (15) are reduced
compared to (14). In contrast, the two middle terms are enhanced. It is therefore to be expected
that the vertex corrections will favour transitions from the main band to the impurity band and
reduce transitions between the impurity bands (if they were allowed) or between the main
bands. We note that the four weights in (15) are actually the respective concentrations of
species.

3.3. Weighted Green functions

The concept of weighted Green functions becomes necessary when different kinds of objects,
such as the A and B atoms for the binary alloy, are on the lattice. Weighting in the CPA
means that we choose from which type of site the particle is starting the motion, as well as
in some cases the type of site where the motion ends. This results in a statistical weight
given for each component. The properly weighted Green function then allows us to identify
and analyse the effects of each component of the alloy. Recently, Schwabe and Elliott [7]
calculated all the necessary weights for the two-particle propagator in the binary alloy. In the
subsequent paper [8], they showed how to use the weights to obtain a more refined treatment
of the interacting exciton in this context. The two-particle weighted Green functions in the
four-component alloy will be required when the residual interaction in (6) is included in the
calculations. Moreover, it will be shown that the one-particle weighted Green functions can
be used to determine n±.

3.3.1. Weighted one-particle Green functions. We consider first the one-particle propagator
and assume that a particle propagates between ‘impurity’ sites i and ‘host’ sites h (as it does
in the four-component alloy as well). The singly weighted Green functions are defined such
that

Gio(l, m) =
{

G(l, m) if l is an impurity

0 otherwise.
(16)

We also define Goi(l, m) as corresponding to the original propagator G(l, m) only if m is an
impurity, and zero otherwise, and the doubly weighted Green function Gii (l, m) that is not
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Figure 1. n± for various values of the particle concentration c in the CPA treatment of the Hubbard
model in the paramagnetic state.

zero only if both l and m are impurities. We define similarly Gho(l, m), Goh(l, m), Gih(l, m),
Ghi (l, m) and Ghh(l, m). The weighted Green function in an alloy of the type H = H0 + V
like (7) can be obtained simply by applying the diagonal interaction operator:

Gio = V

U
G, Goi = G

V

U
, Gii = 1

U 2
V GV . (17)

An estimation of the averages such as Ḡio is needed in order to study how, on average, the
processes on the different species of the alloy contribute to the one-particle properties. In the
CPA the one-particle single weights are found to be [2, 7]

Ḡio = Ḡoi = �

U
Ḡ Ḡho = Ḡoh =

(
1 − �

U

)
Ḡ. (18)

Ḡio offers a method for obtaining the average number of sites that are doubly occupied in the
Hubbard model for the paramagnetic case. At zero temperature, the average number of sites
per atom with an ↑ spin is given by N↑ = 〈c†

i↑ci↑〉 = ∫ µ

−∞ dE (−1/π) Im Ḡ↑
ii(E). The Green

function Ḡ↑(E) is evaluated in the CPA. This formulation counts all sites where an ↑ spin is
present, including sites where both up and down spins are found. Recalling the alloy analogy,
the ↑ spin sees the sites where a ↓ spin is present as defect sites i , where the particle interacts
with energy U . The weighted Green function Ḡ↑ io

ii is thus 0 on sites where there is no ↓ spin,
filtering out the singly occupied sites. Hence the number of sites per atom n± where two spins
are found is, on average in the CPA approximation and with (18), (9),

n± =
∫ µ

−∞
dE

(
− 1

π

)
Im

[
F↑(E)

N↓

1 − (U − �↑(E))F↑(E)

]
. (19)

In the limit U → 0, n± → N↑ N↓, as expected. The results for n± in the CPA treatment and
for the paramagnetic case, N↑ = N↓, are given in figure 1. For less than half-filling, that is
for c = N↑ = N↓ � 0.5, n± decreases rapidly from the random value c2 to 0. At U = 1,
n± becomes almost negligible. Beyond half-filling, saturation forces a minimum number of
up and down spins to cohabit even at large U , reaching a minimum value of 2c −1 at U → ∞.
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3.3.2. Weighted two-particle Green functions. They are defined identically to the one-particle
Green functions. We estimate 〈G↑n1n2

i j G↓n2n1
j i 〉, where n1 and n2 denote respectively the type

of site i and j can be. The result will be naturally linked to the vertex correction. Schwabe
and Elliott [7] presented the calculations used to obtain singly weighted and doubly weighted
two-particle Green functions for a binary alloy with clearly defined and fixed impurities i
and hosts h. For the susceptibility the following weighted Green functions will be required:
〈G↑n+

i j G↓n+

j i 〉, 〈G↑n−
i j G↓n−

j i 〉, 〈G↑n+n+

i j G↓n+n+

j i 〉, 〈G↑n−n−
i j G↓n−n−

j i 〉. The calculations, though not
totally identical, can be made on the very same lines as in the work of Schwabe and Elliott’s [7].
The determination of 〈G↑n±oCG↓on±〉 corresponds for example to calculating 〈G↑ioCG↓oi〉,
as n± is acting as an impurity for both the up spin and the down spin. In the case of single
weights we find thus for the susceptibility

〈G↑ noCG↓ on〉 = 〈G↑ onCG↓ no〉 = 〈G↑CG↓〉 ξn (20)

where n ∈ {n±, n+, n−, n∅} and

ξn±
:= 

(U − �↑)(U − �↓)

n±(1 − N↑)(1 − N↓)

n± − N↑ N↓ ξn∅

:= 

�↑�↓
n∅ N↑ N↓

n± − N↑ N↓

ξn−
:= 

(U − �↑)�↓
n− N↑(1 − N↓)

n± − N↑ N↓ ξn+
:= 

�↑(U − �↓)

n+(1 − N↑)N↓

n± − N↑ N↓ .

(21)

The doubly weighted Green functions involve some lengthy algebra. Schwabe and Elliott [7]
found, after suitable approximations, that when C is diagonal the total weight is the product
of the single weights. Again, the calculations for our four-component alloy can be carried
through in the same fashion and we also get

〈G↑ n1n2 CG↓ n2n1〉 = 〈G↑CG↓〉 ξn1ξn2 (22)

where n1, n2 ∈ {n±, n+, n−, n∅}.
We note that the four terms of −1 in (13) correspond to the expression for the four

weights. In the small U limit, �σ → N−σ U and  → U 2(n± − N↑ N↓), so that each weight
is simply the corresponding concentration: ξn → n, n ∈ {n±, n+, n−, n∅}. In the large U
limit the weights retain their energy dependence but it is easy to see that the weights of the n±,
n+ and n− sites go to zero, while the one associated with n∅ tends to 1. Contributions from
occupied sites are eliminated as the repulsive interaction grows, preventing encounters of the
particles on those sites when Ne < 1.

3.4. The residual interaction

We turn now our attention to the last term in (6). So far we have found the solution
K 0

i jkl of the reduced equation of motion. The simplest way of treating the term

−Uδi j〈〈(n j↓ − ni↑)c†
i↓c j↑; c†

k↑cl↓〉〉E is to average the n jσ s to Nσ s, so that it becomes

−Um δi j〈〈c†
i↓c j↑; c†

k↑cl↓〉〉E , with m = N↓ − N↑. This is the VCA treatment of this term.
Calling Ki jkl the solution of the whole equation of motion (6), it can be checked that Kxxx′ x′

can be expressed in terms of the uncorrected solution by

Kxxx′ x′ (t) = K 0
xxx′ x′ (t) − U

∑

n̄

∫ ∞

−∞
dt ′ K 0

xxn̄n̄(t − t ′)Kn̄n̄x′ x′ (t ′). (23)

Fourier transforming both in time and space, we get

K (q, E) = K 0(q, E)

1 + U K 0(q, E)
. (24)
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This result, however, is not consistent with the one-particle Green functions obtained with the
CPA, as (24) predicts an instability in the ground state at U = −1/K 0(0, 0). Since the CPA
does not allow for ferromagnetic solutions, a treatment of the extra term is required that is
consistent with the original method.

A more refined treatment can be obtained when N↑ �= N↓ if the extra term is treated
using the weighted Green functions developed in the CPA. Instead of taking their averages,
the operators niσ are again replaced by 0 or 1 at random. The integral equation including the
extra term now reads

Kxx′ (t) = K 0
xx′ (t) − U

m

∑

n̄

(
nn̄↓ − nn̄↑

) ∫ ∞

−∞
dt ′ K 0

xn̄(t − t ′)Kn̄x′ (t ′) (25)

where, to simplify the notation, we have written K 0
xx′ instead of K 0

xxx′ x′ . Transformed in the
energy space, it can be developed into

Kxx′ (E) = K 0
xx′ (E) − U

m

∑

n̄

K 0
xn̄(E)

(
nn̄↓ − nn̄↑

)
K 0

n̄x′ (E)

+

(
U

m

)2 ∑

n̄1,n̄2

K 0
xn̄1

(E)
(
nn̄1↓ − nn̄1↑

)
K 0

n̄1n̄2
(E)

× (
nn̄2↓ − nn̄2↑

)
K 0

n̄2 x′ (E) + · · · . (26)

The terms (nn̄↓ − nn̄↑) can take three possible values, 0, 1 or −1, depending on whether the
site n is an empty or doubly occupied site, a single ↓ site, or a single ↑ site, respectively. The
summations over n̄, n̄1, n̄2 etc in (26) can thus be restricted to singly occupied sites. This is
just in fact the summation over all sites of the weighted Green functions. They have however
to be normalized by the impurity concentration, as the averaged weighted Green function is
the total counted on all impurity sites. Writing v↑ ≡ U/(m n+) and v↓ ≡ −U/(m n−), the
expansion (26) becomes, after Fourier transforming,

K (q, E) = K 0(q, E) +
∑

s∈{↑,↓}
vs K 0,os(q, E)K 0,so(q, E)

+
∑

s1,s2∈{↑,↓}
vs1vs2 K 0,os1(q, E)K 0,s1s2(q, E)K 0,s2o(q, E) + · · · . (27)

Such an expansion is very similar to what is done in the case of the excitonic absorption in
a binary alloy [8]. In the paper, Schwabe and Elliott calculate the optical absorption of an
exciton, taking into account the interaction between the hole and the electron. This is done by
writing a weighted scattering expansion comparable to (27). Similarly to in [8], (27) can be
expressed in a compact matrix form. The following matrices are defined, where all weighted
Green functions are understood to depend on q and E :

K 0 =
(

K 0 n+

K 0 n−

)
Û =

(
v↑ = U

mn+ 0
0 v↓ = − U

mn−

)
K̂ 0 =

(
K 0 n+n+

K 0 n+n−

K 0 n+n−
K 0 n−n−

)
.

(28)

Since the disorder average has been taken, the following simplification can be made: K 0 n+n− ≡
K 0 n−n+

, and K 0 n ≡ K 0 o n ≡ K 0 n o for any n. The scattering expansion (27) becomes

K (q, E) = K 0(q, E) + K 0
T
Û K 0 + K 0

T
Û K̂ 0Û K 0 + · · ·

= K 0(q, E) + K 0
T
Û

∞∑

n=0

[K̂ 0Û ]n K 0. (29)
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As (29) represents a geometric series, the equation goes over to

K (q, E) = K 0(q, E) + K 0
T
Û [I − K̂ 0Û ]−1 K 0. (30)

This expression can be greatly simplified if the small U limit is taken. In that case, the U 2-
terms are neglected, and the weights are energy independent. Using the property (22) for the
double weights, (30) becomes

K (q, E) → K 0(q, E)

1 + U
m K 0(q, E)

[
(ξ n−

)2

n− − (ξ n+
)2

n+

] (31)

so that the standard result (24) is retrieved.

3.5. The paramagnetic case

As the CPA does not allow for ferromagnetic ground states, the paramagnetic case where
n+ = n−, N↑ = N↓ and m = 0 must be examined separately. In this case, the averaged
weighted Green functions with respect to n+ and n− are expected to be identical. However, the
condition that K 0 on+

is equivalent to K 0 on−
is not fulfilled by the expressions for the weights as

they are given by (21). This is due to the fact that the denominator of G2,n−oon−
(z1, z2) contains(

U − �↑(z1)
)
�↓(z2), whereas G2,n+oon+

(z1, z2) contains �↑(z1)
(
U − �↓(z2)

)
. The energy

convolution therefore produces two different results for K 0 n+
and K 0 n−

, in spite of the physical
symmetry in the problem. The symmetry is however restored if K 0−+ is considered together
with K 0

+−. In the paramagnetic regime we have K 0 n+

−+ = K 0 n−
+− , with similar equivalences for

the doubly weighted Green functions. It is thus possible in principle to obtain the limit of
Kxx (q, E) := K−+(q, E) + K+−(q, E) when m → 0. To simplify the notation, we abandon
the wavevector and energy dependences. The first term of the expansion of Kxx from (27),
K1, is given by

K1 = U

m

(
(K n+

−+)
2

n+
− (K n−

−+)
2

n− +
(K n+

+−)2

n+
− (K n−

+−)2

n−

)
. (32)

The two terms in the middle and the two remaining terms on the right-hand side of (32) become
identical in the paramagnetic limit and can be paired off. We need only consider one pair, for
example limm→0 = U/m

(
(K n+

−+)
2/n+ − (K n−

+−)2/n−)
. We define Ñ so that N↑ = Ñ − m/2

and N↓ = Ñ + m/2. Similarly, n+ = ñ − m/2 and n− = ñ + m/2. In the paramagnetic limit
K n+

−+ = K n−
+− → K ñ . Both K n+

−+ and K n−
+− can be developed in powers of m so that

(K n+
)2

n+
= (K ñ)2

ñ
+ m

∂

∂ ñ

(
(K ñ)2

ñ

)
∂ ñ

∂m
+ O(m2). (33)

The two terms together give

(K n+
)2

n+
− (K n−

)2

n− = −m

(
− (K ñ)2

ñ2
+

2

ñ
K ñ ∂K ñ

∂ ñ

)
. (34)

Due to the self-consistent nature of the CPA, the quantity ∂K ñ/∂ ñ is very difficult to obtain.
The self-energy varies in a complex way with the concentration of impurities,as the background
itself is affected by a small modification in the number of impurities. The weights themselves
are also dependent on the self-energy and the concentration of species in a complex manner.
In two cases, however, the quantity ∂K ñ/∂ ñ can be established. In the limit U → 0 it is easy
to see that ∂K ñ/∂ ñ → K ñ/ñ. The same result is obtained in the split-band limit, since in this
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Figure 2. Imaginary part of χ xx
0 (q, E) and χ0 xx at q = 0 and for Ne = 0.7. Dotted line: χ xx

0
without the inclusion of the vertex correction; solid line: χ xx

0 with the inclusion of the vertex
correction; circles: χ xx including both the vertex correction and the residual interaction. (a)
U = 0.5, n± = 0.04 and µ = −0.05; (b) U = 3.0, n± = 0.0 and µ = 0.02.

case K ñ(z1, z2) is given simply by ñ/[z1(z2 − U)]. In the limit of small and large U , the first
term becomes

K1 → − U

n+n−
(
K n+

−+

)2 − U

n+n−
(
K n−

−+

)2
. (35)

It is easy to see that the subsequent terms in U can all be paired in the same way. Extrapolating
the result (35) to the higher order terms, we find

Kxx (q, E) → 2K 0(q, E) − U (K 0 n+
)2

n+n−

1 + U K 0 n+n+

n+n−
− U (K 0 n−

)2

n+n−

1 + U K 0 n−n−
n+n−

. (36)

Numerical results are given in the next subsection.

3.6. Numerical illustrations

The numerical applications of the formalism developed for the CPA susceptibility are presented
here for a three-dimensional, simple cubic band at T = 0. We evaluate χ xx

0 (q, E) (residual
interaction neglected) and compare it with χ xx (q, E) that includes the residual interaction.

The susceptibility is given by χ xx
0 (q, E) = χ−+

0 (q, E) + χ+−
0 (q, E) which, in the

paramagnetic ground state of the CPA, becomes simply χ xx
0 (q, E) = 2χ−+

0 (q, E). χ−+
0 (q, E)

is obtained as χ−+
0 (q, E) = −K 0(q, E), where K 0(q, E) is calculated from the combination

of Green functions (10). Each of these Green functions is obtained from the CPA solution (11)
with the vertex correction (13). The quantity n± is determined from the weighted Green
functions (19). The effects of the vertex correction are depicted in figure 2 (solid line) for
small and large U and compared to the non-corrected case (dotted line). They correspond to
the predictions of (15) and can be understood from the perspective of the spin up and down
propagating on the four-component alloy. As the spin up interacts with the down spins and
the spin down with the up spins, it is to be expected that the n± sites will play a major role
in correlating the particle motions. For both the propagating spins, up and down, the n± sites
are included in the impurity band (B band), hence enhancing transitions from the main band
(A band) to the B band. Similarly, the no sites, with which no spin interacts, are included in
the A band of each species. Compared to the free particle cases, it is thus expected that the
inclusions of correlations will reduce the transitions from one main sub-band to the other.
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The result of the approximation (36) for χ xx (E) at q = 0 can be seen (circles in figure 2)
in its range of validity. At small U the A–A transitions are enhanced compared to the value
including only the vertex correction. At large U the A–A transitions have come back to their
vertex correction value. In both cases though, the A–B transitions are strongly reduced.

Even though we could not interpolate (36) for intermediate U , it can be predicted that
the peak at the energy of the maximum of the A–B transition will be reduced from its value
obtained from the vertex correction. This is an expected behaviour considering the way we
split the equation of motion. In the first part of the problem, when considering the propagation
of two particles on a four-component alloy, the inclusion of the vertex correction led to the
enhancement of the interband transitions. Due to the nature of the problem, it is indeed
expected for the particles to become correlated when they meet on an n± site, the type of site
that represents an impurity for both of them. However, the Pauli principle forbids the ↑ and ↓
spin to flip on such a site. When considering one-particle Green functions, the Pauli principle
is taken into account through the Fermi statistics. The vertex correction is obtained from the
point of view of two particles moving in a lattice of potentials, rather than an up and down
spins moving among other up and down spins. It is thus not clear whether the inclusion of
the vertex correction conserves the Pauli principle or not. The inclusion of the last term in the
equation of motion in the form of a weighted scattering correction appears to adjust the results
of the vertex correction so that they comply to the Pauli principle.

4. Two-particle Green functions in the τ -CPA

The τ -CPA treatment developed in I for the one-particle Green functions is extended to the
two-particle case, by using the two-particle CPA propagator up to a time τ and thereafter the
VCA propagator. The resulting Green function is thus made of a CPA part that includes the
vertex correction and of a VCA part, both weighted by factors depending on τ .

The two-particle Green functions in the τ -CPA can be built in a straightforward manner
from the one-particle case. The consistent way to build the two-particle Green function
〈G(2)(t)〉 is to break it into a VCA part and CPA part, as for the one-particle case:

〈G(2)(t)〉 =
{ 〈G(2)CPA(t)〉 if t � τ

〈G(2)VCA(t)〉 if t > τ .
(37)

For any time t , 〈G(2)(t)〉 = 〈G↑(t)G↓(t)〉. To obtain the two-particle function of the type
〈G(2)(E)〉 = ∫ ∞

−∞ dω 〈G(2)(ω, E − ω)〉, where G(2)(ω, E − ω) = G↑(ω)G↓(E − ω), one has
to evaluate

〈G(2)(E)〉 =
∫ ∞

−∞
dt eiEt〈G(2)(t)〉 =

∫ τ

−∞
dt eiEt 〈G(2)CPA(t)〉

︸ ︷︷ ︸
=:〈G̃(2)CPA(E)〉

+
∫ ∞

τ

dt eiEt〈G(2)VCA(t)〉
︸ ︷︷ ︸

=:〈G̃(2)VCA(E)〉

. (38)

The VCA part of the two-particle Green function is easily obtained. Using the definition
from I:

GσVCA
k (E) = 1

2π

∫ ∞

τ

dt eiEt GσVCA
k (t) = ei(E−εk −N−σ U)τ

E − εk − N−σ U
(39)

the VCA part can be expressed as the convolution of the one-particle functions:

〈G(2)VCA
k (E)〉 =

∫ ∞

−∞
dε

1

N

∑

q

G↑VCA
k+q (ε)G↓VCA

q (E − ε) (40)
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and G(2)VCA(t) = G↑(VCA)(t)G↓VCA(t). The factor for matching the two Green functions at
time τ is included as usual in the VCA part, so that we have

〈G̃(2)VCA
k (ε1, ε2)〉 = 1

N

∑

q

G̃↑VCA
k+q (ε1)G̃↓VCA

q (ε2) (41)

with, from I, the one-particle VCA part that includes the normalization βk is

G̃σ VCA
k (E) := 1

βk

(
eIm �σ (E)τ

E − εk − N−σ U

)
. (42)

The same approximation will be assumed to hold also for the CPA part. In that case, the
procedure must be adapted to treat the vertex corrections correctly. The τ -CPA says that the
interaction is treated in the CPA up to a time τ , from when it is treated in the VCA. In both
cases, the interaction is taken in full. Therefore the vertex correction term must involve the
full CPA Green functions and not only the CPA equivalent of (42),

G̃σ CPA
k (E) := 1

βk

(
1 − eIm �σ (E)τ

E − εk − �σ (E)

)
. (43)

The pure CPA two-particle Green function is given by (11). A treatment similar to that for
the one-particle Green functions, where the energy dependence of � was ignored temporarily
while the time integration was carried over, is applied here as well. The vertex correction to
the free particle case, the denominator of (11), is kept unchanged in the pure CPA form while
the numerator becomes, as for the VCA case, a convolution on the τ -CPA one-particle Green
functions. The following approximation will thus be used for the CPA part of the two-particle
Green function in the τ -CPA:

〈G̃(2)CPA
k (ε1, ε2)〉 =

1
N

∑
q G̃↑CPA

k+q (ε1)G̃↓CPA
q (ε2)

1 − (ε1, ε2)
1
N

∑
q G↑CPA

k+q (ε1)G↓CPA
q (ε2)

(44)

(ε1, ε2) is calculated using the self-energy obtained from the full CPA equation.

5. Dynamical susceptibility in the τ -CPA

In this section we put together the elements developed in the prior sections. In order to use the
formalism developed above to calculate the susceptibility, the residual interaction between the
two spins must first be calculated.

The transverse susceptibility, without the residual term, is given by the two-particle Green
function K 0

k (E), built from the disorder average of (10). So far we have K 0τCPA
k (E) =

K̃ 0VCA
k (E)+ K̃ 0CPA

k (E), where K̃ 0VCA
k (E) and K̃ 0CPA

k (E) are given by the convolutions (10) of
the two-particle Green functions (41) and (44). The correction for a pure VCA system is given
by (24) whereas the pure CPA requires the weighted result (30). Once again, a straightforward
treatment would be to Fourier transform (24) and (30), then to integrate the CPA part from 0 to
τ and the VCA part from τ to ∞. This would affect both the numerator and the denominator
of (24) and (30). The denominators contain the correction due to the interaction. It was argued
in the context of the vertex correction for 〈G̃(2)CPA(E)〉 that the correction is kept unchanged,
since the interaction must be included at all time. An identical procedure is applied here, so
that the time integration is carried only on the numerators:

K τCPA
k (E) ≈ K̃ 0VCA

k (E)

1 + U K 0VCA
k (E)

+
K̃ 0CPA

2 k (E)

1 + K 0CPA
1 k (E)

. (45)

K 0VCA
k (E) is given by the convolutions (10) of the complete two-particle Green functions

G(2)VCA
k (ε1, ε2) = N−1

∑
q G↑VCA

k+q (ε1)G↓VCA
q (ε2). K 0CPA

1 k (E) and K̃ 0CPA
2 k (E) are defined
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below. In order to simplify the notation, the index CPA will be abandoned for the weighted
Green function, and n+ becomes just + (with identical definitions for the other species of the
alloy). All functions are evaluated at the energy E .

K 0CPA
1 k = U

m

(
K 0−−

k

n− − K 0++
k

n+

)
− U 2

m2n+n−
[

K 0++
k K 0−−

k − (
K 0+−

k

)2
]

(46)

K̃ 0CPA
1 k = U

m

(
K̃ 0−−

k

n− − K̃ 0++
k

n+

)
− U 2

m2n+n−
[

K̃ 0++
k K̃ 0−−

k − (
K̃ 0+−

k

)2
]

(47)

K̃ 0CPA
2 k = K̃ 0CPA

k

[
1 + K̃ 0CPA

1 k

] − U

m

[(
K̃ 0−

k

)2

n− −
(
K̃ 0+

k

)2

n+

]

+
U 2

m2n+n− ×
[(

K̃ 0+
k

)2
K̃ 0−−

k +
(
K̃ 0−

k

)2
K̃ 0++

k − 2K̃ 0+
k K̃ 0−

k K̃ 0+−
k

]
. (48)

This formulation is not completely consistent with the rest of the picture. The denominators of
both VCA and CPA parts do not yet contain the full interaction. We recall that (10) is an integral
from 0 to the chemical potential µ. µ is obtained consistently from the one-particle τ -CPA
Green function GτCPA (see I) and not from the pure CPA or the pure VCA. The problem can be
retraced back to the development (25) relating K to K 0. We note that the expression (25) is also
valid in the case of the pure VCA, since in this case the factor

(
nn̄↓ − nn̄↑

)
is simply averaged

to m, consistently with the VCA. Going back to the expansion (25), it is clear that the term m in
U/m

∑
n̄

(
nn̄↓ − nn̄↑

)
comes from the inhomogeneous term 2πδ(t)(δ jk〈c†

i↓cl↓〉− δil〈c†
k↑c j↑〉)

in the time version of the equation of motion (4). The two correlation functions involved are
thus to be calculated at the time t = 0. If a pure VCA (CPA) system is considered, the m
generated by the inhomogeneous term will be called mVCA (mCPA):

mVCA = N↓VCA − N↑VCA =
∫ µ

−∞
dε

(
− 1

π

)
1

N

∑

q

Im[G↑VCA
q (ε) − G↓VCA

q (ε)] (49)

mCPA = N↓CPA − N↑CPA =
∫ µ

−∞
dε

(
− 1

π

)
1

N

∑

q

Im[G↑CPA
q (ε) − G↓CPA

q (ε)]. (50)

GσVCA
k is given by the full VCA one-particle result and by the full CPA (as detailed in I).

Hence, the expansion (24) for the VCA case should be written as

K VCA(q, E) = K 0VCA(q, E)

1 + U m
mVCA K 0VCA(q, E)

. (51)

In a pure VCA case m is simply equivalent to mVCA. The CPA case (30) must also be recast in
the same way, by making the substitution m → mCPA in (46)–(48). If the case of a pure CPA
is considered, m ≡ mCPA. The approximation for the two-particle Green function, involving
the CPA vertex corrections and the extra U -term of the equation of motion, is thus

K τCPA
k (E) = K̃ 0VCA

k (E)

1 + U m
mVCA K 0VCA

k (E)
+

K̃ 0CPA
2 k [mCPA](E)

1 + K 0CPA
1 k [mCPA](E)

. (52)

The chemical potential µ, being obtained from the whole GτCPA, will in general lead to an
mCPA and mVCA quite different from the values obtained for pure systems.

It is crucial to keep the full interaction, as it guarantees the appearance of the spin waves
at E = 0 and k = 0. As ferromagnetism sets in, collective spin wave excitations are expected
to appear. The magnetization at k = 0 can assume any direction in the averaged system and
the energy cost E for exciting spin waves must be zero. This is also found in the τ -CPA, as
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Figure 3. Spin wave part of the spectrum in the ferromagnetic regime of the τ -CPA for τ = 1 and q
varying along the (1, 1, 1) direction: q = 0 (circles), q = 1/5Q (squares), q = 2/5Q (diamonds),
q = 3/5Q (triangles), q = Q (dots). (a) U = 6.0, N↑ = 0.1, N↓ = 0.6; (b) U = 1.6, N↑ = 0.27,
N↓ = 0.43.

the spin wave spectrum is generated almost entirely from the VCA part. In a ferromagnetic
ground state we find limk→0 K 0VCA

k (E) → mVCA

E−Um , and limk→0 K VCA
k (E) → mVCA

E . For small
but finite k, we expect the excitation energy E to increase. As in the Stoner model, the spin
waves will finally merge with the continuum. The transverse susceptibility χ−+

k (E) can now be
obtained as χ−+

k (E) = −K τCPA
k (E). In ferromagnetic ground states, χ+−

k (E) is also required
and can be obtained similarly to χ−+

k (E).
The paramagnetic limit of (52) is again difficult to obtain, and we will concentrate the

application of (52) on ferromagnetic ground states.
Numerical calculations of the susceptibility require the evaluation of n±. This value is an

equilibrium property of the system along with the chemical potential and cannot be deduced
from one-particle properties alone in polarized states. For most cases of interest it is however
not necessary to carry through a full self-consistent treatment of n±. When the system is close
to or beyond the transition from the paramagnetic to the ferromagnetic state, the value of the
interaction is fairly large. It is clear from figure 1 that it is then reasonable to put n± to zero
under those circumstances, which is what we have done in the numerical examples.

Calculations of the susceptibility for small and large U , using the result (52) for τ -CPA at
τ = 1 in a ferromagnetic ground state and for a simple cubic band, are illustrated in figure 3.
For both values of U the system is in a state of incomplete ferromagnetism. The insets in
figure 3 show χ0xx (q, E) built from K 0τCPA

k (E) = K̃ 0VCA
k (E) + K̃ 0CPA

k (E)—that is, ignoring
the residual expansion. In the case of U = 6, figure 3(a), the spectrum of χ0xx (q, E) remains
relatively sharp at all qs, and we observe the progression of the spin waves across the zone.
At U = 1.6 (figure 3(b)), the spin waves are also seen to have decreased in energy at q = Q,
but in that case the excitation is very broad and the peak is rather a resonance of χ0xx (q, E).
The τ -CPA causes the general broadening of the spectrum by forcing the VCA Green function
to match the CPA Green function at time τ . The tendency of the spin wave to emerge out
of the continuum when the wavevector follows the diagonal of the Brillouin zone is however
characteristic of an antiferromagnetic instability that is also exhibited in the pure VCA case.
It is therefore to be assumed that the region of ferromagnetism would be reduced, as is usually
expected in the Hubbard model. While the dynamical mean field theory (DMFT) does not
predict ferromagnetism for finite U on the hypercubic lattice, it is expected for the fcc lattice
roughly between fillings of 0.2 and 0.9 for U = 6 [12]. In two dimensions on the square lattice
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the cluster DMFT exhibits a small island of ferromagnetism around a filling of 0.85 [13]. In
our case a more thorough study of the antiferromagnetic ground state would have to be done
in order to establish the stability of the ferromagnetic ground state.

6. Conclusion

In this paper we have extended our new treatment of the magnetism in the Hubbard model
using the τ -CPA developed in paper I to consider the two-particle propagators and the general
magnetic susceptibility of the system. The equation of motion suggests finding the solution first
within the alloy analogy and then expanding this solution according to the residual interaction.
This requires initially the study of the model in the pure CPA (effectively a four-component
alloy since electrons of different spins see different scattering centres), the calculation of the
vertex corrections and the weight associated with each species of particles.

It is crucial for the full treatment of the magnetic susceptibility to include this residual
interaction between pairs of electrons with opposite spins on the same site. It is well known
that this gives rise to spin wave excitations even within an RPA treatment of the Stoner (VCA)
approximation. Within the τ -CPA this requires the proper use of the weighted two-particle
propagators, in part to ensure that the Goldstone mode at q = E = 0 is preserved. Some
further approximations are necessary to make the calculation tractable, which then provides
a satisfactory treatment of the susceptibility. In the paramagnetic case, when treated in the
appropriate limit, it shows an enhancement of transitions between sub-bands of different spins
and a corresponding reduction of those between same spin bands. In the ferromagnetic case
the spin wave spectrum is obtained.

Although the treatment via the τ -CPA reported here is restricted to a single band in
the simple cubic lattice with less than half-filling, it is in principle possible to extend the
formalism further. It would be desirable in the future to study the model in this new light for
other band structures, as well as including in the analysis other forms of magnetic order such
as antiferromagnetism.
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